

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 1F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4MA1_1F_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of method in the working space with no answer on the answer line then all methods should be marked and the lowest mark awarded.

If there is an answer on the answer line then only the method leading to this answer should be marked.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from question 9b, 9c (where the mark scheme states otherwise) the correct answer, unless obtained from an incorrect method, should be taken to imply a correct method.

Q	uestion	Working	Answer	Mark	Notes
1	(a)		3 or 19 or 51 or 81	1	B1
	(b)		24 or 60	1	B1
	(c)		16 or 81	1	B1
	(d)		3 or 19	1	B1
					Total 4 marks

2	(a)	5	1	B1
	(b)	60	1	B1
	(c)	1000	1	B1
				Total 3 marks

3	(a)		Mweru	1	B1	
	(b)		six thousand four	1	B1	
			hundred and five			
	(c)		69 000	1	B1	
	(d)	5299 × 5.5 =29 144.5 or 29 500 ÷ 5299 = 5.567 or 29 500 ÷ 5.5 =5363.63		2	M1	for a relevant calculation and answer (rounded or truncated to 2 sf or better)
			yes/no with correct figures and reason		A1	correct figures and a reason that refers to (Lake) Malawi (or 29 500) or refers back to $5\frac{1}{2}$ (or 5.5) or refers to (Lake) Albert (or 5299)
						Total 5 marks

4	(a)	unlikely	1	B1
	(b)	\times at $\frac{1}{2}$	1	B1
	(c)	× at 0	1	B1
				Total 3 marks

5		$\frac{3}{5}$ × (12481 – 8906) (=2145) or		4	M2 If not M2 then award M1 for either 12481 – 8906 (=3575) or
		$1 - \frac{3}{5} (= \frac{2}{5})$ and 12481 – 8906 (=3575)			$1 - \frac{3}{5} (= \frac{2}{5})$
		3575 - "2145" or $\frac{2}{5}$ × "3575"			M1 dep
			1430		A1
	•				Total 4 marks
				•	
6	(a)		12 <i>of</i>	1	R1

6	(a)		12 <i>ef</i>	1	B1
	(b)		3m + 8k	2	B2 B1 for 3 <i>m</i> or (+) 8 <i>k</i>
	(c)	5 <i>y</i> = 14 – 3 or 5 <i>y</i> = 11 or		2	M1
		3 – 14 = –5y or –11 = – 5y			
			$2\frac{1}{5}$		A1 for $2\frac{1}{5}$ or $\frac{11}{5}$ oe or 2.2
			3		Total 5 marks

7	(a)		4	1	B1	
	(b)	10 – 4		2	M1	or for 10 and 4 selected
			6		A1	
	(c)	4, 4, 4, 4, 4, 5, 7, 7, 7, 8, 10		2	M1	allow one error or omission
			5		A1	
	(d)		more with reason	1	B1	e.g. mean of extra pairs of shoes is £40; £31 is £3 less than given mean and £49 is £15 more than given mean
						Total 6 marks

8	angle <i>DBC</i> (or <i>DBC</i>) = (180 – 116) ÷ 2 (=32)		5	M1	angles may be seen on diagram
	angle <i>ADB</i> = 180 – (90 –"32") – 55 (=67) or			M1	dep
	angle <i>ADB</i> = 360 – 116 – "32" – 55 – 90 (=67)				
	x = 360 – 116 – "67" (= 177)			M1	dep
		177 with		A2	for 177 and full reasons
		reasons			base angles in an <u>isosceles</u> triangle are equal
					angles in a <u>triangle</u> add up to 180° angles at a <u>point</u> add up to 360°
					If not A2 then A1 for 177 with 1 correct reason
					(SCB1 dep on M1 for a correct reason explicitly linked to their correct method)
					Total 5 marks

9	(a)	eg 0.7, 0.8, 0.5, 0.725 eg $\frac{28}{40}, \frac{32}{40}, \frac{20}{40}, \frac{29}{40}$		2	M1	for converting all four fractions to a common form e.g. common denominators or decimals or 3 fractions in the correct order or correct reverse order
			$\frac{1}{2}$, $\frac{7}{10}$, $\frac{29}{40}$, $\frac{4}{5}$		A1	Any correct form
	(b)	eg $\frac{16}{30} + \frac{9}{30}$ or		2	M1	for $\frac{16}{30}$ and $\frac{9}{30}$ or both fractions expressed as equivalent fractions with denominators that are a common multiple of 10 and 15 eg. $\frac{80}{150}$ and $\frac{45}{150}$
		$\operatorname{eg} \frac{16}{30} + \frac{9}{30} = \frac{25}{30} = \frac{5}{6}$	shown		A1	conclusion to given answer coming from correct working which shows all steps

See next page for part 9(c)

Quest	tion	Working	Answer	Mark	Notes
9	(c)	e.g. $\frac{14}{3}$ and $\frac{10}{9}$			M1 Both fractions expressed as improper fractions
		e.g. $\frac{14}{3} \times \frac{9}{10}$			M1 or for both fractions expressed as equivalent fractions with denominators that are a common multiple of 3 and 9 eg. $\frac{42}{9} \div \frac{10}{9} \text{ or } \frac{126}{27}, \frac{30}{27}$
		e.g. $\frac{14}{3} \times \frac{9}{10} = \frac{126}{30} = \frac{21}{5} = 4\frac{1}{5}$ or $\frac{14}{3} \times \frac{9}{10} = \frac{126}{30} = 4\frac{6}{30} = 4\frac{1}{5}$ or $\frac{14^7}{3^1} \times \frac{9^3}{10^5} = \frac{21}{5} = 4\frac{1}{5}$ or $\frac{126}{27}$, $\frac{30}{27} = \frac{126}{30} = \frac{21}{5} = 4\frac{1}{5}$	Shown	3	A1 Dep on M2 for conclusion to $4\frac{1}{5}$ from correct working – either sight of the result of the multiplication e.g. $\frac{126}{30}$ must be seen or correct cancelling prior to the multiplication to $\frac{21}{5}$ NB: use of decimals scores no marks
					Total 3 marks

10	3.5 + 5.75 + 6.5 + 6.25 + 8 (=30) or		4	M1	(allow one error in sum to 30)
	3.5 × 8 (=28) or 5.75 × 8 (=46) or 6.5 × 8(=52)				
	or 6.25 × 8 (=50) or 8 × 8 (=64)				
	"30" ÷ 5 (=6) or "30" × 8 (=240) or			M1	Dep on M1 and if adding values,
	"28" + "46" + "52" + "50" + "64" (=240)				must be 5 values with intention
					to add
	"6" × 8 or "240" ÷ 5			M1	dep
		48		A1	
					Total 4 marks

11	(a)	triangle with	2	B2	if not B2 then award B1 for
		vertices (6, 4) (6, 1)			a rotation of 180° about a
		(4, 1)			different centre
	(b)			B1	Reflection
		Reflection in $x = -1$	2	B1	<i>x</i> = −1
					NB. No marks if more than one
					transformation is stated or
					suggested with column vector,
					coordinate, SF, angle etc
					Total 4 marks

12	(a)	49.876(41697)	2	B2	If not B2 then award B1 for
					41.6(6) or $\frac{125}{3}$ or $\frac{7.5}{0.18}$ or 8.2(0)
	(b)	50	1	B1	ft from (a) provided 2 or more sig figs
					Total 3 marks

13	360 ÷ 24		2	M1 A fully correct method to find
				the number of sides of the
	(n-2)180 = (180 - 24)n			polygon or correct use of
				formula with use of 24
		15		A1
				Total 2 marks

14	(a)	1, 2, 4, 5, 8, 10, 20, 40 and 1, 2, 4, 8, 16, 32, 64 OR 2 × 2 × 2 × 5 and 2 × 2 × 2 × 2 × 2 × 2		2	M1	for start to list factors – must be at least 4 for each of 40 and 64 or prime factorisation of both numbers with at least 2 stages correct eg $40 = 2 \times 20 = 2 \times 4 \times 5$ could be numbers on tree or in table
			8		A1	
	(b)	$(8 =) 2 \times 2 \times 2 \text{ or } 2^3 \text{ or } 2^{3+n}$		2	M1	For clearly writing 8 as a product of prime factors or as 2 ³
			$2^{n+3} \times 3 \times 5^m$		A1	
						Total 4 marks

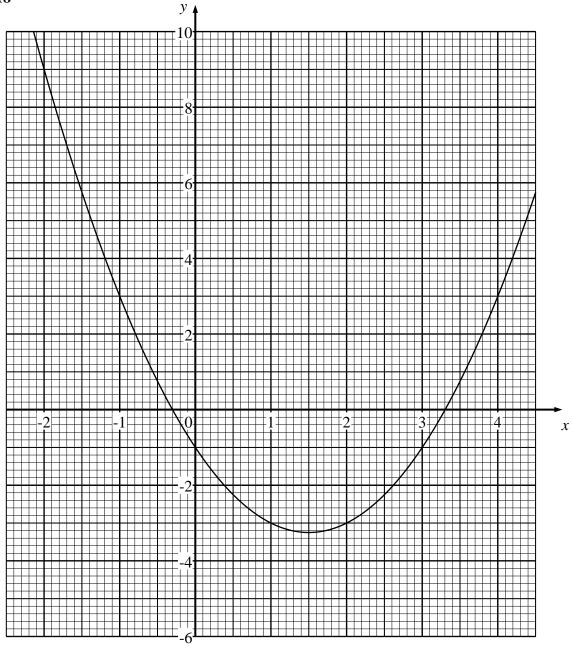
15	(a)	25 25 15 15 15 15 15 15 15 15 15 15 15 15 15	'before' with reason	1	B1	e.g. before as gradient is steeper
		eg 15 km/h or $\frac{25}{6}$ m/sec or 0.25 km/min or $\frac{15}{4}$				or before as speed before is 15
		oe				km/h speed after is 12 km/h or
		eg 12 km/h or $\frac{10}{3}$ m/sec or 0.2 km/min or $\frac{9}{3}$				before as she goes over 11(allow
		$\frac{1}{3} = 12 \times 11771 \times 117$				11-12) km in ¾ hour but only
		oe				goes 9 km in ¾ hour after oe
						NB: any figures given must be
						accurate if they haven't used
						'steeper' oe
	(b)		line from (12:00,	2	B2	If not B2 then B1 for a line from
			24) to (12:45, 24) to			(12:00, 24) to (12:45, 24) or for a
			(14:15, 0)			line from (<i>t</i> , 24) to (<i>t</i> + 1.5, 0) or
						for a time of 1.5 hours (oe) seen
	(c)	1h 45m + 1h 30m or 1 + 0.75 + 1.5 or			M1	ft from their graph for total time
		3h 15m or 3.25h or 195 m oe				when cycling
		(24 × 2) ÷ 3.25 oe eg (48 ÷ 195) × 60			M1	ft dep on M1 for full method
			14.8	3	A1	awrt 14.8
						Total 6 marks

16	(a)	2 × 7 + 3 × -4 or 14 + -12 or 14 - 12		2	M1	
	(0.)		2	_	A1	
	(b)		e^4	1	B1	
	(c)		y ¹⁶	1	B1	
	(d)	$x^2 + 9x - 2x - 18$		2	M1	for 3 correct terms or 4 correct terms ignoring signs or $x^2 + 7x + c$ or + $7x - 18$
			$x^2 + 7x - 18$		A1	
	(e)		$4cp^2(4c^3 + 5p)$	2	B2	if not B2 then award B1 for any correct factorisation with at least 2 factors outside the bracket eg $4cp(4c^3p + 5p^2)$, $cp^2(16pc^3 + 20p)$, $2p(8c^4 + 10cp^2)$ etc or the correct common factor and a 2 term expression with just one error
						Total 8 marks

17	48 ÷ 2 (=24)		4	M1		
	"24" ÷ 3 = 8			M1	dep	M2 for "24" $\times \frac{5}{}$
	"8" × 5			M1	dep	1VIZ 101 24 × - 3
		40		A1		
	Alternative scheme					
	(5):3:6 oe		4	M1		
	48 ÷ 6 (=8) oe			M1	dep	M2 for $48 \times \frac{5}{}$
	"8" × 5 oe			M1	dep	6
		40		A1		
						Total 4 marks

18	а	9, 3, (-1), -3, (-3), -1, (3)	2	B2	If not B2 then award
					B1 for at least 2 correct values
	b		2	M1	dep on B1 ft from (a) for at least
					5 points plotted correctly
		correct graph		A1	for the correct graph (clear
					intention to go through all the
					points and which must be
					curved at the bottom)
					Total 4 marks

19	2x + 0.18 + 2x + 3x + 0.26 + x = 1 or $1 - (0.18 + 0.26) (= 0.56)$			M1
	$x = (1 - 0.18 - 0.26) \div (2 + 2 + 3 + 1) (=0.07)$			M1
	(0.18 + 4 ×"0.07") × 200 or 0.46 × 200 or 36 + 42 + 14 oe			M1 dep on M2 and probabilities between 0 and 1 or for $\frac{92}{200}$, oe with 92 seen
		92	4	A1
				Total 4 marks


20	12 × 8 × 5 (= 480)		3	M1	
	"480" × 0.7			M1 dep	
		336		A1	
					Total 3 marks

					Total 4 marks
		oe			5×10^n oe where $n \neq 6$
		10 ⁶			$320000 \text{ or } 3.2 \times 10^5 \text{ oe } \mathbf{or}$
	(c)	5 000 000 or 5 ×	2	B2	If not B2 then award B1 for
	(b)	4×10^{-3}	1	B1	
21	(a)	5 700 000	1	B1	

22	0.08 × 170 000 (=13600) or 0.92 × 170 000			M1	oe eg 170 000 ÷ 12.5	M2 for 170 000 ×
	(=156400)					0.92^3
	e.g. 0.92 × (0.92 × "156400")			M1	(dep)for a complete	
					method	
		132377	3	A1	or 132376.96	
					(SCB2 for 170 000 × 0.92 ⁴)(=	=121786.(810))
					(SCB1 for 170 000 × 0.24 (=4	40 800) or
					170 000 ×0.76 (=129 200) o i	r
					170 000 × 1.08 (= 183 600)	or
					170 000 × 1.08 ³ (= 214151)	or an answer of
					129 200 or an answer of 21	4 151 – 214151.1(0))
						Total 3 marks

				T
23	0.5 × 6 × 6 (=18)		5	M1 For area of triangle, or may use
				$\frac{1}{2}$ \times 6 \times 6 \times 6 \times 6 or
				2 2 2 311 43 31
				$\frac{1}{2} \times 6 \times 6\sqrt{2} \sin 45 \text{ or}$ $\frac{1}{2} \times 6\sqrt{2} \times 3\sqrt{2} \text{ oe}$
	$(d^2 =) 6^2 + 6^2 (=72) \text{ or } \frac{AC}{(\sin 90)} = \frac{6}{\sin 45}$			M1
	$\sqrt{6^2 + 6^2}$ (= $\sqrt{72}$ = $6\sqrt{2}$ =8.4(85)or 8.5) or (=			M1
	$AC = \frac{6(\sin 90)}{\sin 45} = 6\sqrt{2} = 8.4(85)$ or 8.5) oe			
	$0.5 \times \pi \times \left(\frac{"8.48"}{2}\right)^2$ (= 9π or 28)			M1
		46.3		A1 for 46.2 – 46.3
		·		Total 5 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom